
 

8th TAE 2022 

20 - 23 September 2022, Prague, Czech Republic 

 

APPLICATION OF ARTIFICIAL NEURAL NETWORK IN PREDICTING THE DRYING 

KINETICS AND CHEMICAL ATTRIBUTES OF LINDEN (TILIA PLATYPHYLLOS 

SCOP.) DURING THE INFRA-RED DRYING PROCESS 

 

Kemal Çağatay SELVI1, Alfadhl Yahya KHALED2, Taner YILDIZ1 

 
1Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture, Uni-

versity of Ondokuz Mayıs-Samsun/Turkey 
2Department of Horticulture, College of Agricultural & Life Sciences, University of Wisconsin – Madi-

son, Madison, WI, USA   

 

Abstract 

This study investigates the potential of applying artificial neural networks (ANNs) to describe the drying 

kinetics of linden leave samples during infra-red drying (IRD) under different drying temperatures of 

50˚C, 60˚C and 70˚C and samples thickness (0.210, 0.220, and 0.230). Kinetic models were developed 

using selected thin layer models, and ANN methods. The statistical indicators of the coefficient of de-

termination (R2), and root mean square error (RMSE) were used to evaluate the suitability of the models. 

The effective moisture diffusivity varied between 4.13 x 10-12 m2/s and 5.89 x 10-12 m2/s and the activation 

energy was 16.339 kJ/mol. The thin-layer models illustrated that all used models (Page, Midilli et al., 

Henderson and Pabis, Logarithmic, and Newton models) can adequately describe the drying kinetics of 

linden leave samples with R2 values (> 0.9900) and lowest RMSE (<0.0200). The ANN model showed 

R2 and RMSE values of 0.9986, and 0.0210, respectively. Also, the ANN model shows the significant 

prediction for the linden chemical attributes for Total phenolics content (TPC), Total flavonoids assay 

(TFA), DPPH, and FRAP of R2 and RMSE values of 0.9975, 2.6100, 0.9891, 0.1346, 0.9980, 2.9317, 

0.9845, and 0.9808, respectively.  

 

Key words: linden leaves, infrared drying, artificial neural network model; total phenolic content; total 

flavonoid, DPPH, FRAP content. 

 

INTRODUCTION 

Linden (Tilia platyphyllos Scop.) is a medicinal plant with a pleasant taste in its tea which has several 

dozen different species and varieties (Chmielewska & Sadowska, 2010). It is rich in polyphenols and 

presents high antioxidant activity against DPPH radicals (Wissam, Nour, Bushra, Zein &Saleh, 2017; 

Siger, Antkowiak, Dwiecki, Rokosik & Rudzińska, 2021). The high agricultural value of linden in terms 

of many valuable elements it contains is emphasized in many articles (Yıldırım, Mavi, Oktay, Kara, 

Algur & Bilaloǧlu, 2000; Buřıčová & Reblova 2008; Kowalski 2017; Kelmendi, Mustafa, Zahiri, Nebija 

& Hajdari, 2020). 

The drying of agricultural products causes the enzymatic reactions to be inactivated as a result of heat 

and mass transfer leading to a reduction of the moisture content inside the product (Rodríguez, Clemente, 

Sanjuan & Bon, 2013). Drying methods such as hot-air drying (HAD), infrared drying (IRD), vacuum 

drying (VD), and microwave drying (MWD) have been used in drying agricultural crops (Onwude, 

Hashim, Abdan, Janius & Chen, 2018; Si, Wu, Yi, Li, Chen, Bi & Zhou, 2015; Tekin & Baslar, 2018). 

Amongst these drying methods, the IRD is the most common commercially used drying method as they 

provide a more uniform dried product, naturally harmless and nontoxic (Onwude, Hashim, Janius, Nawi 

& Abdan, 2016).  

IRD radiation had been implemented in food processing, reducing energy consumption and time spent 

in the process, securing and ensuring the quality of foodstuffs processed. There are some studies, related 

to the IRD process, reported in the literature on mint (Ertekin & Heybeli, 2014), pepper (Soysal, Keskin, 

Arslan & Sekerli, 2018), and kiwifruit slices (Doymaz, 2018). Computational intelligence tools such as 

artificial neural networks (ANN) are considered complex tools for complex systems and dynamic mod-

eling (Khaled, Aziz, Bejo, Nawi & Abu Seman, 2018). The application of ANN offers many advantages 

compared to conventional modeling techniques due to the learning ability, improved flexibility, online 

non-destructive measurements, reduced assumptions, suitability to the non-linear process, and tolerance 
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of incomplete data (Bai et al., 2018). For instance, ANN is inspired by the biological neural system as 

a useful statistical tool for nonparametric regression (Khaled, Aziz, Bejo, Nawi & Abu Seman, 2018).  

The objectives of this study are to investigate the drying characteristics of linden leave samples at dif-

ferent temperatures (50˚C, 60˚C, and 70˚C) using IRD, to evaluate the likelihood of applying ANN 

modeling as a non-destructive technique in describing the drying behavior of linden leave samples under 

different drying conditions and to compare the results with mathematical thin-layer models. 

 

MATERIALS AND METHODS 

Samples preparation  

Linden leaves (T. platyphyllos Scop.) were collected from the campus area of Ondokuz Mayıs Univer-

sity under open-air conditions located in the Samsun city coastline, Black Sea region, Turkey.  

 

Drying experiments 

The IRD technique was carried out using a laboratory-scale drying unit (Radwag balances and scales, 

Warsaw, Poland). This device has transmitting electromagnetic radiation in the range of medium to 

shortwave IR (radiator). The linden leave samples were dried at three temperatures (50˚C, 60˚C, and 

70˚C). During drying, the amount of evaporating water was designated in about 3-min intervals at each 

drying temperature. Trials were replicated three times and average weight loss was reported.  

 

Drying kinetics 

The variation in moisture content during the IRD technique was expressed in the form of moisture ratio 

(dimensionless) as described in Equation 1. 

MR =  
(Mt −  Me)

(Mo −  Me)
 (1) 

where Mt, Me and Mo are the moisture content of the samples at time t, equilibrium moisture content 

and initial moisture content, respectively. According to Aghbashlo et al. (2009) Me values did not change 

because they were relatively low compared to Mt and Mo values, resulting in negligible error during 

simplification, thus in this study, the moisture ratio was expressed as shown in Equation 2: 

MR =  
Mt

Mo
 (2) 

Effective moisture diffusivity and activation energy 

Fick's diffusion equation as a dimensional approach was applied due to its simplicity to describe the 

mass transfer of drying samples. The effective moisture diffusivity of samples for IRD was estimated 

using Crank's solution of Fick's diffusion equation as described in Equation 3 (Erbay and Icier, 2010). 
∂Mt

∂t
= ∇ .  (Deff ∇ Mt) (3) 

Assuming constant diffusion and uniform initial moisture distribution, the Crank's solution for cylindri-

cal shaped sample is shown in Equation 4. 

MR =  
8

π2
∑

1

(2n + 1)2
 exp (−

(2n + 1)2Deff t

r2 )

∞

n=1

 (4) 

where Deff is the effective moisture diffusivity (m2/s), r is the radius of the sample (m), n is the positive 

integer, and t is the drying time (s). For the sake of mathematical simplicity, Equation 4 was restricted 

to the first term, resulting in Equation 5: 

MR =  
8

π2
 exp (−

π2Deff t

r2 ) (5) 

The activation energies for IRD were calculated from the relationship between effective moisture diffu-

sivity and the average temperature of the samples based on the Arrhenius equation as shown in equation 

(6). 

Deff =  Doexp (−
Ea

R(T + 273.15
) 6) 

where, Do is the pre-exponential factor, Ea is the activation energy (kJ/mol), R is the universal gas con-

stant (8.3143 × 10-3 kJ/mol) and T is the average temperature of the sample (K). The values of Ea for 
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IRD method for different linden leave thickness levels were measured from the resulting slope values 

by plotting the fitting curve between lnD and 1/(T + 273.15) (Equation 7). 

Slope = − 
Ea

R
 (7) 

 

Mathematical thin-layer modelling 

The selected mathematical models namely: Page, Midilli et al., Henderson and Pabis, Logarithmic, and 

Newton model as listed in Table 1. The mathematical models applied based on non-linear least squares 

regression analysis using Sigma plot software (Version12.0, Systat Software Inc., California, USA). The 

application of these models gives better prediction with fewer assumptions (Khaled, Kabutey, Selvi, 

Mizera, Hrabe & Herak, 2020).  

 

Tab. 1 Mathematical thin-layer drying models. 

Model no. Model name Model expression 

1. Page model MR = exp(-ktn) 

2. Midilli et al. model MR=aexp(-kt)+bt 

3. Henderson and Pabis model MR = a exp (-kt) 

4. Logarithmic model MR = a exp (−kt) +c 

5. Newton model MR = exp (−kt) 

 

Artificial neural network 

The structure of a neural network is in the form of interconnected layers. Haykin (1999) divided an ANN 

into 3 clusters of structures based on their connection called: (1) single layer feed-forward network, (2) 

the multi-layer feed-forward network, and (3) the recurrent network. A back-propagation algorithm was 

applied in the training of the model and sigmoid function was used in all cases as illustrated in Equation 

8. 

f(x) =  
1

1 +  e−x
 (8) 

The datasets were prepared by randomly dividing the data into training and testing datasets of 70%, 

30%, respectively. The chosen hidden layer architectures were [3], [6], [9], [3, 3], [6, 6], [9, 9], [3, 3, 3], 

[6, 6, 6] and [9, 9, 9] matrix, where for example, [3, 3] and [3, 3, 3], represents the 2 and 3 hidden layers 

with 6 and 9 neurons each (Figure 1). The software (Weka 3.6, Hamilton, New Zealand) was used to 

analyze the ANN model.  

 

 
Fig. 1 Artificial Neural networks topology applied for this study 
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Extract preparation of the chemical characteristics  

The powdered sample was extracted with methanol/distilled water (80:20, v/v) for 12 hours at room 

temperature by the maceration method, and centrifuged for 20 min. The supernatant was used for the 

estimation of antioxidants and antioxidant activity. The total phenolic content (TPC) was determined by 

applying the Folin-Ciocalteu method (Singleton and Rossi, 1965). For the total flavonoids content (TFC) 

was measured using an AlCl3 colorimetric assay according to Gao et al. (2014).  

Free radical scavenging activity was measured using the stable DPPH free radical, according to the 

method described by Brand-Williams et al. (1995). The scavenging activity on the DPPH free radical 

was compared with that of the Trolox, a water-soluble vitamin E analog. Results were expressed in 

mmol Trolox equivalents (TE)/g of powder. The ferric reducing/antioxidant power (FRAP) assay was 

conducted according to Benzie and Strain (1996).  

 

Statistical analysis for mean comparison 

Statistical analysis was performed using the Statistical Analysis System software (SAS version 9.2, In-

stitute, Inc., Cary, N.C.). ANOVA at 5% level of significance and 95% confidence interval was per-

formed using the Duncan test to compare the mean significant differences between different drying time 

intervals at the IRD technique. These statistical indicators are the coefficient of determination (R2) and 

root mean square error (RMSE). They are computed mathematically as highlighted in Equations 9 and 

10: 

R2 = 1 −  
∑ (Vpred − Vexp)2N

i=1

∑ (Vpred − Vm)2N
i=1

 (9) 

 

RMSE =  √
∑ (Vpred − Vexp)2N

i=1

N
 (10) 

where Vpred is the predicted value, Vexp is the actual observation from experimental data, Vm is the mean 

of the actual observation, and N is number of observations.  

 

RESULTS AND DISCUSSION  

Drying process behavior  

The variations of moisture ratio with time for the IRD technique at different temperatures (50˚C, 60˚C, 

and 70˚C) is presented in Figure 2. According to Figure 2, the moisture ratio values of 0.20 and 0.42 

were determined at a drying time of 10 min and at temperatures of 60˚C and 70˚C. At a drying time of 

37 min was found the moisture ratio of 0.20 at 50˚C. Also, results showed that higher drying temperature 

resulted in a greater slope and the drying time is reduced by about 250%. The results are in agreement 

with other researchers on the drying behavior of various varieties of materials (Ayadi, Ben Mabrouk, 

Zouari, Bellagi, 2014; Khaled, Kabutey, Selvi, Mizera, Hrabe & Herak, 2020).  

 

 
 

Fig. 2 Drying characteristics of linden leave samples 
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Effective moisture diffusivity and activation energy  

The values of the Deff are presented in Table 2. The Deff values were varied between the range of 4.13 x 

10-12 m2/s and 5.89 x 10-12 m2/s. The values of Deff  obtained in this study were within the general range 

of 10-6 to10–12 m2/s for drying of food materials. The values of Deff are comparable with previous works 

for strawberry drying (2.40-12.1 x 10-9 m2/s), apple drying (2.27-4.97 x 10-10 m2/s), persimmon slices 

(1.330-9.221 x 10-9 m2/s) and pumpkin drying (1.19-4.27 x 10-9 m2/s) (Xiao, Pang, Wang, Bai, Yang & 

Gao, 2010; Abbaspour-Gilandeh, Jahanbakhshi & Kaveh, 2020; Sacilik & Elicin, 2006).  

On the other hand, the diffusivity constant in other words “pre-exponential factor” of the Arrhenius 

equation (D0) was predicted as 1.746 × 10−9 m2/s for linden leaves. The activation energy (Ea) of linden 

leave samples was calculated from the values of effective moisture diffusivity. The relationship between 

Ea and Deff was described by an Arrhenius-type equation (Equation 6). The values of activation energy 

were obtained by plotting ln(Deff) versus 1/(T+273.15) for the IRD method (Figure 3).  

 

Tab. 2 Values for Deff  and Ea of linden leave samples during IRD technique. 

Drying Temperature (˚C) Deff (m2/s) D0 (m2/s) Ea (kJ/mol) 

50 4.13 x 10-12   

60 4.47 x 10-12 1.746 x 10-9 16.339 

70 5.89 x 10-12   

 

 
 

Fig. 3 Arrhenius-type relationship of Ea versus temperature for IRD method 

 

A Comparison between mathematical thin-layer models 

The mathematical thin-layer models were applied to describe the drying kinetics of linden leave samples 

during the IRD method. Table 3 shows the selected mathematical models that fitted the experimental 

moisture content data in relation to the sample.  

 

Tab. 3 Statistical evaluation of the mathematical drying models for linden leaves samples of IRD 

Drying 

Temperature (˚C) 

Model 

no 
Model parameters R2 RMSE 

50 

1 k= 0.0472, n= 1.0381, 0.9992 0.0090 

2 
k= 0.0413, n= 1.0933, a= 0.9998, b= 

0.0003 
0.9999 0.0025 

3 a= 1.0128, k= 0.0538 0.9990 0.0098 
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4 a= 1.0096, k= 0.0547, c= 0.0053 0.9991 0.0099 

5 k= 0.0532 0.9988 0.0104 

60 

1 k= 0.0955, n= 0.9915 0.9935 0.0257 

2 
k= 0.0716, n= 1.1305, a= 0.9984, b= 

0.0009 
0.9992 0.0102 

3 a= 1.0032, k= 0.0937 0.9935 0.0256 

4 a= 0.9844, k= 0.1028, c= 0.0286 0.9969 0.0188 

5 k= 0.0934 0.9935 0.0245 

70 

1 k= 0.2584, n= 0.7815 0.9931 0.0269 

2 
k= 0.1300, n= 1.1340, a= 0.9914, b= 

0.0013 
0.9984 0.0152 

3 a= 0.9935, k= 0.1625 0.9896 0.0330 

4 a= 0.9611, k= 0.1866, c= 0.0405 0.9998 0.0055 

5 k= 0.1635 0.9896 0.0312 

 

Results of artificial neural network  

Time, temperature, and linden leave thickness levels were used to predict moisture ratio using the ANN 

model at IRD technique. Tables 4 show the statistical results related to training and validation of the 

multilayer feed-forward network structure of samples drying experimental data for the IRD method.  

 

Tab. 4 Statistical results of drying kinetics of linden leaves samp. for the ANN model using IRD 

No. hidden layer No. Neurons 
Training Testing 

R2 RMSE R2 RMSE 

1 3 0.9620 0.0654 0.9978 0.0152 

1 6 0.9602 0.0666 0.9943 0.0194 

1 9 0.9717 0.0566 0.9866 0.0302 

2 3,3 0.9549 0.0706 0.9974 0.0132 

2 6,6 0.9769 0.0546 0.9986 0.0210 

2 9,9 0.9743 0.0568 0.9974 0.0327 

3 3,3,3 0.9424 0.0795 0.9962 0.0215 

3 6,6,6 0.9672 0.0616 0.9971 0.0163 

3 9,9,9 0.9704 0.0587 0.9961 0.0412 

 

Comparison between artifitial neuron networks and mathematical thin-layer models 

The highest results obtained from the computational intelligence (ANN) and the top two mathematical 

thin-layer (page, Midilli et al, and Logarithmic) models of prediction moisture ratio is summarized in 

Table 5. The best results found by applying ANN in the case of IRD method were R2 of 0.9986 and 

RMSE of 0.0210 at 2 hidden layers with 12 neurons.  

 

Tab. 5 Statistical results of drying kinetics of linden leave samples for artificial neural networks and 

mathematical thin-layer models using IRD 

Model R2 RMSE 

Computational intelligence ANN 0.9986 0.0210 

Mathematical model Logarithmic 0.9998 0.0055 

differences 0.9992 0.0090 

Midilli et al. 0.9999 0.0025 
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Total Phenolic Content (TPC) and Flavonoids (TFC) 

The results are given by calculating dry matter values to prevent errors arising from dry matter diffe-

rence. The total phenolic content (TPC) of fresh leaves material was significantly (p < 0.05) higher than 

dried leaves. Table 6 presents the TPC and TFC content of the linden leaves under different temperatures 

process.  

 

Tab. 6 Total phenolic and flavonoid content of the fresh and dried linden leaves. 

Temperature (˚C) TPC (mg/g, DW) TFC (mg/g, DW) 

Fresh 12.773 ± 0.76 b 0.567 ± 0.015 b 

50 95.184 ± 0.47 a 2.790 ± 0.150 a 

60 99.756 ± 0.63 a 2.631 ± 0.084 a 

70 99.756 ± 0.63 a 2.583 ± 0.145 a 

Significance <0.001 <0.001 

The total phenolic content (TPC), total flavonoid content (TFC), a, b: Different letters within same co-

lumn shows the statistical difference (p < 0.01). 

 

To analyze the data, a non-parametric permutation test was used because of heteroscedasticity. TPC and 

TFC values were corrected and evaluated based on dry matter values to prevent errors arising from dry 

matter differences. Table 6 shows that the TPC of linden leaves was significantly different between fresh 

and dried samples and the values ranged from 99.756 ± 0.63 mg/g to 127.73 ± 0.76 mg/g. The TPC in 

the dried leaves (for 50 ◦C, 60 ◦C, 70 ◦C) was significantly (p<0.001) lower than that in the fresh.  

On the other hand, as can be seen in Table 6, the Duncan test indicates no statistical difference among 

temperatures (50 ◦C, 60 ◦C, and 70 ◦C). This means that linden leaves seem to be thermostable in the 

studied temperature range.  

The TFC in linden leaves is shown in Table 5; it varied significantly between fresh and dried samples 

and ranged from 0.567 ± 0.015 mg/g to 2.790 ± 0.150 mg/g. The reason for this may be the decrease of 

the solution viscosity due to the increase in temperature as the lime leaves change from a wet state to a 

dry state, and the increase of solubility, accordingly. In this study, depending on the type of flavonoids 

and the number of substituents, there could be no change in the flavonoid contents. In addition, the TFC 

results obtained in the present study correlated with Olsson et al.  

This finding suggests that besides the Midilli drying model, a simpler Page model can also be preferred 

for linden leaves under an IR thin layer drying process. In addition, 50 ◦C will be sufficient in terms of 

phenol content and flavonoid content in a thin layer lime leaf drying process with IR.  

 

Results of artificial neuron networks to predict chemical properties of linden leave samples 

Temperature and linden leave thickness levels were used to predict total phenolics (mg/g, DW), Total 

flavonoids (mg/g, DW), DPPH (mmol/g, DW), and FRAP (mmol/g, DW) using ANN model. Tables 7 

illustrate the statistical results from the four chemical properties of the multilayer feed-forward network 

structure of samples drying experimental data. The ANN data set were used to assess the optimum nu-

mber of neurons and hidden layers for multilayer neural network modelling for determining the best 

predictive power. In the case of total phenolics, total flavonoids, and FRAP, the results found that ar-

chitecture with 2 hidden layers with 6 (3, 3 neurons), obtained the best results of R2 (0.9975, 0.9891, 

and 0.9845) and the lowest RMSR of (2.6100, 0.1346, and 0.9808) as compared to those of 1 hidden 

layer (3, 6 and 9 neurons), 2 hidden layers (12, 18 neurons) and 3 hidden layers (9, 18 and 27 neurons), 

respectively (Table 6). While, DPPH, the highest results were found that architecture with 3 hidden 

layers with 18 (6, 6, 6 neurons), obtained the best results of R2 (0.9980) and the lowest RMSR of 

(2.9317) as compared to those of 1 hidden layer (3, 6 and 9 neurons), 2 hidden layers (6, 12, 18 neurons) 

and 3 hidden layers (9 and 27 neurons), respectively (Table 7).  
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Tab. 7 Statistical results of chemical characteristics of linden leave for the ANN model using IRD.  

No. Hidden 

Layer 

No. 

Neurons 

Total phenolics 

(mg/g, DW) 

Total flavonoids 

(mg/g, DW) 

DPPH, mmol/g, 

DW 

FRAP, mmol/g, 

DW 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

1 3 0.9969 2.8914 0.9884 0.1393 0.9977 3.1420 0.9816 1.0760 

1 6 0.9965 3.1026 0.9882 0.1404 0.9977 3.1396 0.9824 1.0485 

1 9 0.9965 3.0855 0.9877 0.1439 0.9975 3.3549 0.9839 1.0017 

2 3,3 0.9975 2.6100 0.9891 0.1346 0.9978 3.0660 0.9845 0.9808 

2 6,6 0.9974 2.6835 0.9890 0.1356 0.9978 3.0664 0.9840 0.9986 

2 9,9 0.9972 2.7533 0.9888 0.1370 0.9978 3.0894 0.9833 1.0197 

3 3,3,3 0.9970 2.8433 0.9881 0.1401 0.9979 3.0421 0.9826 1.0402 

3 6,6,6 0.9968 2.9741 0.9876 0.1439 0.9980 2.9317 0.9818 1.0690 

3 9,9,9 0.9965 3.0873 0.9873 0.1460 0.9979 3.0024 0.9812 1.0906 

 

CONCLUSIONS 
This study investigated the potential of using the ANN as a modeling tool for predicting the drying 

process and the chemical characteristics of linden leave samples. The results showed that IRD had a 

significant effect on the drying kinetics, moisture diffusivity, and activation energy of linden leave 

samples. An increase in drying temperature and sample thickness influenced the drying kinetics and 

moisture diffusivity of samples. The effective moisture diffusivity varied between 4.13 x 10-12 m2/s and 

5.89 x 10-12 m2/s and the activation energy was 16.339 kJ/mol. The mathematical thin-layer modeling 

results showed that page, Midilli et al., and Logarithmic models can adequately (R2 > 0.9900) describe 

the drying kinetics of linden leave samples. The highest R2 value of 0.9986 was observed for ANN (2 

hidden layers with (6, 6) neurons) model. ANN tool as a computational intelligence method produced 

closer results compared to mathematical thin-layer. Also, the ANN model shows the significant pre-

diction for the linden chemical attributes for Total phenolics content (TPC), Total flavonoids assay 

(TFA), DPPH, and FRAP of R2 and RMSE values of 0.9975, 2.6100, 0.9891, 0.1346, 0.9980, 2.9317, 

0.9845, and 0.9808, respectively. Therefore, the ANN model can describe a wider range of experimental 

data whereas the application of theoretical models is limited to specific experimental conditions in most 

cases. Thus, ANN may be considered a suitable alternative modeling method for describing the drying 

behavior of linden leave samples.  

A universal method for appropriate estimation of wire diameter of helical compression spring was de-

termined. The estimation can be based only on the amount and type of load and selected wire material. 

This procedure can be useful when only force and deflection of spring are specified. 
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