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Abstract 

The soil tensile test was performed to analyze the cohesive soil model. The results were obtained exper-

imentally and from the simulation using the discrete element method with the new bond model suggested 

by the Rocky DEM software. The simulated tensile test results showed good agreement with the experi-

mental results done in the laboratory. Thereafter, the effect of Young’s modulus, normal stiffness, nor-

mal stress limit, tangential stiffness, and tangential stress limit was analyzed to generate maximal force, 

power, and stiffness during the simulation. As well as, multivariate equations were suggested to describe 

the influence of previously mentioned properties. 
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INTRODUCTION 

Tillage or non-tillage operations are carried out using mechanical energy, commonly using a tractor-

drawn tool to achieve cutting, inversion, pulverization, and other types of soil movement. The energy 

required for soil processes accounts for a significant proportion of total energy used in crop production. 

With high fuel prices and increasing pressure on emissions, minimizing the energy used in crop produc-

tion is essential. In soil processing, decreasing the draught forces and optimizing vertical forces are 

desired to reduce energy consumption. However, the experimental procedures involved have a high cost, 

and the extrapolation of the results to all conditions is uncertain (Mattetti, Varani, Molari, & Morelli, 

2017). With the rapid development in computer technology, researchers have employed numerical meth-

ods to model the soil-tool interaction.  

Numerical methods (Mouazen & Neményi, 1999), including the finite element method (FEM) and dis-

crete element method (DEM), were also used to simulate the interaction between cohesionless soil and 

tillage tools (Asaf, Rubinstein, & Shmulevich, 2007). These methods could calculate tool forces and 

simulate soil loosening (Mouazen & Neményi, 1999). In DEM simulation, mixing and cracking propa-

gation can be simulated. It is well-known that cohesive forces exist between soil particles, which are 

attributed to liquid bridges and living organisms with very complex behaviors (Cundall & Hart, 1992). 

Although these forces must be accounted in the DEM simulations, a few reports about this point can be 

found in the literature on soil–tool interaction, where is presented chisel motion in the soil (Du et al., 

2022; Katinas, Chotěborský, Linda, & Jankauskas, 2019; Kešner et al., 2021; Mak, Chen, & Sadek, 

2012; Tamás, Jóri, & Mouazen, 2013; Ucgul, Saunders, & Fielke, 2018). 

Tsuji’s report (Tsuji et al., 2012) included several models for cohesion are classified into non-physical, 

microscopic, and macroscopic models. The latter describes models that are not derived from a micro-

mechanical origin of cohesion, but their formulation is oriented on the macroscopic effect of cohesion. 

The studies mentioned above about capillary cohesion are examples of the microscopic approach. It is 

suggested (Obermayr, Vrettos, Eberhard, & Däuwel, 2014; Tsuji et al., 2012), to use models derived 

from macroscopic considerations for practical engineering problems, while the microscopic models may 

serve for calibration purposes. 

Currently, the DEM method is widely used in the study of rocks (Liu et al., 2022), soils (Ding, Song, & 

Yue, 2022; Dun, Yue, Huang, & Zhang, 2022; Foldager et al., 2022; Gao, Yu, Wang, Li, & Shi, 2022; 

P. Wang & Yin, 2022; J. Wu, Shen, Yang, & Feng, 2022), powders, grains (Guo, Zheng, Zang, & Chen, 

2022; M. Wu & Wang, 2022) or agriculture (Guo et al., 2022) because it can adequately describe discrete 

behaviors of these materials. 

The present paper investigates cohesion soil model by Discrete Element Method, considering the pre-

stress and the cohesive forces formed by bond bridges among neighboring soil grains. The aim is to 
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explore the evolution of the behavior of soil grains and their relationship with the mechanical properties 

of cohesive soil. 

 

MATERIALS AND METHODS 

Discrete element model for cohesive soil 

This contribution is focused on the model for cohesive soil. The adhesive force is added to the adhe-

sionless material interaction. For the discrete element model shown here, only forces laws for the con-

tacts between adjacent particles are given. Used software RockyDEM provides all other necessary steps 

in the simulation, like contact detection, overlaps, and time integration of the particle dynamics and 

takes care of input and output operations. The description of these steps is omitted here for brevity. 

Normal force model 

The normal force model is described as a hysteretic linear spring model. This model, proposed by Wal-

ton & Braun (Walton & Braun, 1986), was referred to as the linear hysteresis model. This elastic-plastic 

(repulsive and dissipative) normal contact model allows simulation of the plastic energy dissipation on 

contact without introducing the overhead of long simulation time. In addition, since no viscous damping 

term is used, the energy dissipation is not dependent on the relative velocities of neighboring particles, 

making the energy dissipation insensitive to other contacts. An additional advantage of this model is 

that compressible materials can be accurately modeled because the contact forces can be almost zero 

even at residual overlaps. 

𝐹𝑛
𝑡 = {

𝑚𝑖𝑛(𝐾𝑛𝑙𝑠𝑛
𝑡 , 𝐹𝑛

𝑡−∆𝑡 + 𝐾𝑛𝑢∆𝑠𝑛)         𝑖𝑓 Δ𝑠𝑛 ≥ 0

𝑚𝑎𝑥( 𝐹𝑛
𝑡−∆𝑡 + 𝐾𝑛𝑢∆𝑠𝑛, 𝜆𝐾𝑛𝑙𝑠𝑛

𝑡 )    𝑖𝑓 Δ𝑠𝑛 < 0
      (1) 

∆𝑠𝑛 = 𝑠𝑛
𝑡 − 𝑠𝑛

𝑡−∆𝑡          (2) 

where 𝐹𝑛
𝑡 and 𝐹𝑛

𝑡−∆𝑡 are normal elastic-plastic contact forces at the current time t and at previous time 

𝑡 − ∆𝑡, respectively, where ∆𝑡 is the time step, ∆𝑠𝑛 is the change in the normal contact overlap during 

the current time. It is assumed positive as particles approach each other and negative when they separate. 

𝑠𝑛
𝑡  and 𝑠𝑛

𝑡−∆𝑡 are normal overlap values at the current and previous time, respectively. 𝐾𝑛𝑙 and 𝐾𝑛𝑢 are 

the values of loading and unloading contact stiffness, respectively. A typical cycle of loading/unloading 

is placed in Fig. 1. 

 

 
 

Fig. 1 Walton & Braun normal contact model. 
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The loading and unloading stiffnesses are defined by the particle size, the bulk Young’s modulus, and 

the restitution coefficient of contacting materials. The last two are the user inputs into RockyDEM. The 

coefficient of restitution  in Rocky is a measure of energy dissipation for the contacting pair of materi-

als. For the contact of two particles or a particle with a boundary, the loading and unloading equivalent 

stiffnesses are defined, respectively, as 

1

𝐾𝑛𝑙
= {

1

𝐾𝑛𝑙,𝑝1
+

1

𝐾𝑛𝑙,𝑝2
    𝑓𝑜𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒– 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑐𝑜𝑛𝑡𝑎𝑐𝑡

1

𝐾𝑛𝑙,𝑝
+

1

𝐾𝑛𝑙,𝑏
   𝑓𝑜𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒– 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑡𝑎𝑐𝑡

     (3) 

𝐾𝑛𝑢 =
𝐾𝑛𝑙

𝜀2            (4) 

The individual stiffnesses corresponding to a particle and a boundary are computed, respectively, as 

𝐾𝑛𝑙,𝑝 = 𝐸𝑝𝐿           (5) 

𝐾𝑛𝑙,𝑏 = 𝐸𝑏𝐿           (6) 

where 𝐸𝑝 is bulk Young’s or elastic modulus of the particle material, 𝐸𝑏 is Young’s modulus of bound-

ary material, 𝐿 is the particle size. In long-term contacts, for instance, among particles in a stockpile, the 

hysteretic linear spring model can give rise to oscillations of very small amplitudes on the normal force 

and the overlap. 

 

Tangential force model 

The tangential force model is the linear spring coulomb limit model. In this model, tangential force is 

elastic-frictional force. If the tangential force were considered purely elastic, the value at time t would 

be: 

𝐹𝑡,𝑒
𝑡 = 𝐹𝑡

𝑡−∆𝑡 + 𝐾𝑡∆𝑆𝑡          (7) 

Where 𝐹𝑡
𝑡−∆𝑡 is the value of the tangential force at a previous time, ∆𝑆𝑡 is the tangential relative dis-

placement of the particles during the timestep, 𝐾𝑡 is tangential stiffness (calculated as loading stiffness 

times tangential stiffness ratio) – this calculation included Young’s modulus of particles and their diam-

eter (Yeom et al., 2019). 

Adhesive (cohesion) force model 

In the macroscopic scale, cohesive materials are characterized by having shear strength even at minimal 

confining pressure. It is described by a cohesive intercept c of the shear strength envelope. 

 

The bond model implemented similar models described in the papers of Gimenez and Potyondy 

(Potyondy & Cundall, 2004; Sangrós Giménez, Finke, Nowak, Schilde, & Kwade, 2018). In this model, 

a bond is a massless entity of cylindrical shape attached to a pair of neighbor particles that exerts elastic 

and viscous forces and moments on them as a reaction to deformations caused by their relative motion. 

If the external load acting on a bond exceeds its specified strength, it will break, and its bonding action 

over the particles will be the case. The two particles are located at a distance h lower than the activation 

distance given by eq (8) 

ℎ𝑎𝑐 = 𝑓𝑎𝑐(𝑟𝑖 + 𝑟𝑗)          (8) 

 
Fig. 2 Geometry of the bond model between two spherical particles of different sizes 
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where ri (m) and rj (m) are the radii of the bonded particles, as shown in Fig. 2, while fac (-) is an input 

parameter as “distance factor”. The activation of bonds happens only once at a specific time during a 

simulation. The radius of the bond between two particles depends only on the radii of those particles  

𝑟𝑏 =
𝑟𝑖𝑟𝑗

𝑟𝑖+𝑟𝑗
           (9) 

The bond model implemented in this module also includes the possibility of adding particle-boundary 

bonds to the simulation. Those bonds share all characteristics described earlier for particle-particle 

bonds, except the activation distance, in this case, is given simply by 

ℎ𝑎𝑐 = 2𝑓𝑎𝑐𝑟𝑝           (10) 

where fac is the corresponding “distance factor” and rp is the radius of the bonded particle. Similarly, the 

radius of the corresponding bond will be directly rb=rp in that case.  

At the time of its activation, a bond is undeformed. From that time on, any relative motion of the bonded 

particles will cause deformation on the bond, to which it will react exerting forces and moments oppos-

ing to that relative motion. The bond deformation can be linear or angular, the former caused by both 

the translational and rotational motion of the bonded particles. At the same time, the latter is only a 

consequence of their rotational motion. In the module, both types of deformation are calculated incre-

mentally, starting from the time of bond activation, tac. Thus, the linear deformation of a bond at any 

given time t is provided by 

𝑠𝑏 = ∑ 𝑣𝑐
𝑟𝑒𝑙∆𝑡𝑡

𝑡𝑎𝑐
          (11) 

where 𝑣𝑐
𝑟𝑒𝑙 is the instantaneous relative velocity at the center point of the bond c, while dt is the simu-

lation timestep. The relative velocity 𝑣𝑐
𝑟𝑒𝑙 is calculated as 

𝑣𝑐
𝑟𝑒𝑙 = 𝑣𝑖 − 𝑣𝑗 + 𝜔𝑖 × ∆𝑟𝑖−𝑐 − 𝜔𝑗 × ∆𝑟𝑗−𝑐       (12) 

where vi and vj are the translational velocities of the bonded particles, i and j are the rotational veloc-

ities of the bonded particles, ri-c is the vector that joints the centroid of the particle i to the bond’s center 

point c. The definition is equivalent to the vector rj-c. The bond in the considered model will oppose 

the linear deformation sb by exerting an elastic force on both bonded particles. The normal and tangential 

components of this force will be given, respectively, by: 

𝐹𝑛
𝑏 = −𝐾𝑛

“ 𝐴𝑏𝑠𝑛
𝑏          (13) 

𝐹𝜏
𝑏 = −𝐾𝜏

“𝐴𝑏𝑠𝜏
𝑏           (14) 

where 𝐾𝑛
“  and 𝐾𝜏

“ are the normal and tangential stiffnesses per unit area, respectively. Ab is the cross-

sectional area of the bond, 𝑠𝑛
𝑏 and 𝑠𝜏

𝑏 are the normal and tangential components of the bond’s linear 

deformation sb. The decomposition of the vector 𝑠𝑏 is carried out by using the following simple expres-

sions 

𝑠𝑛
𝑏 = 𝑠𝑏 ∙ �̂�           (15) 

𝑠𝜏
𝑏 = 𝑠𝑏 − 𝑠𝑛

𝑏 ∙ �̂�          (16) 

in which �̂� is the normal unit vector parallel to the bonds axis. 

The breakage criterion is based on the maximum values of the tensile and shear stresses acting on the 

periphery of the bond. Those values are given, respectively, by 

𝜎𝑚𝑎𝑥 = −
𝐹𝑛

𝑏

𝐴𝑏
           (17) 

𝜏𝑚𝑎𝑥 =
|𝐹𝜏

𝑏|

𝐴𝑏
           (18) 

During a simulation, the maximum tensile and shear stresses values are constantly monitored for all 

active bonds. When the tensile strength limit exceeds 𝜎𝑚𝑎𝑥 or the shear strength limit exceeds 𝜏𝑚𝑎𝑥, 

the bond breaks and, consequently, is deactivated immediately. After such a breakage, a bond cannot be 

reactivated again during the simulation. 

 

Tested soil 

The soil tests were conducted in Prague-Suchdol, Czech Republic (50°12’78.51″N, 14°37’58.01″ E). 

The soil of the experimental field was classified as Haplic Chernozem, including clay (6.52%), sand 

(29.32%), and silt loam soil (64.16%) (Kodešová et al., 2016). The average moisture content was 14.3 

wt. %. 
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Model calibration 

The Rocky DEM software (version 2022R1, ESSS company, Florianopolis, Brazil) was used for the 

simulation. The NVIDIA Quadro GV100 graphic card was used to operate Rocky DEM software. The 

DEM analysis and post-processing were performed with an Intel Xeon Gold 6244 (3.6 GHz) computer, 

128 GB RAM, and 2x1TB PCIe SSD. 

 

Tab. 1 Variables setup for cohesive discrete element model 

Material interac-

tion 

Normal stiff-

ness (NS) 

Normal stress 

limit (NSL) 

Tangential 

stiffness (TS) 
Tangential stress 

limit (TSL) 

Bulk young 

modulus 

(YM) 

N·m-3 kPa N·m-3 kPa MPa 

Particle-particle  1·1010 1000 1·1010 1000 20 

 1·109 500 1·109 500 40 

 1·108 100 1·108 100 60 

Totally 256 tasks Static friction 0.7    

 Dynamic friction 0.6    

Particle-boundary Static friction 0.4    

 Dynamic friction 0.3    

 

A DEM calibration was performed based on a tensile test of the soil (Fig. 3). The tensile test was con-

ducted in the laboratory. Afterward, the value of the soil strength was used in the evaluation model for 

the DEM tensile test model. The values from the model were compared with those from the experiment. 

Iterations were compiled for the subsequent model until the course of the curves showed deviations. The 

setting of the iterations was performed using a DoE approach, and the effects of the DEM parameter’s 

dependency on the cohesive soil properties were determined. The parameters were obtained by optimi-

zation of the model results and validated based on the experimental results. 

 

 

  
a) b) 
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c) 

 

 

Fig. 3 Tensile test of simulated (a and b) and measured (c) samples. Adhesive force distribution in soil 

sample before rupture (a) and after that (b) with fracture line. 

 

RESULTS AND DISCUSSION  
The simulated maximal forces and stiffness agreed with experimental data in all cases. A typical com-

parison is presented in Fig. 4. Simulated maximal forces of the tensile test were within the limits of 

experimental test values. Power, calculated like area under the tensile curve, seems to show different 

values, and relationships between simulated and experimental data are too difficult. Because the power 

is calculated with deformation, the size of discrete elements can probably play a role in the model’s 

accuracy.   

 
Fig. 4 Simulated (black) and measured (grey) data from the tensile test, mean and standard deviations 

are represented by limits. 
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Good practice models need relative accuracy variables for a simulation setup. The results of the ANOVA 

multi-criteria analysis of the simulations (Fig. 5) were carried out using the DoE approach. This ap-

proach creates a relevant response sensitivity to changes in input variables. In other words, how can the 

model’s input data affect the observed result? The effects analysis shows that the most significant influ-

ence on the results of the strength model (maximum strength) has the variable “normal stress limit” and 

“normal stiffness” and their interaction (Fig. 5a). The model is less influenced by the tangential input 

parameters. In the case of stiffness, however, the model’s sensitivity is also affected by Young’s modu-

lus and, after that, by the “tangential stress limit” (Fig. 5c). The energy (Fig. 5b) output cannot be ade-

quately interpreted due to the high error rate compared to the experiments. Still, it seems that it will 

correlate with the force model and its sensitivity. 

 

 

  
a) b) 

 

 

c)  

 

Fig. 5 Effect of variables (Young’s modulus, normal stiffness, normal stress limit, tangential stiffness, 

tangential stress limit) on responses, (a) – maximal forces, (b) – power, (c) stiffness. 
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Data from 256 models can be generalized in multivariate linear equations. The results of these statistical 

models are presented below. The determination index shows a close dependence between the phenom-

enological model and the simulation results, i.e., the experimentally measured values. 

 

𝐹𝑚𝑎𝑥 = 16.3 − 7 ∙ 10−5𝑁𝑆 + 7.6 ∙ 10−5𝑇𝑆 − 4 ∙ 10−9𝑁𝑆𝐿 + 9.5 ∙ 10−7𝑌𝑀 ∙ 𝑁𝑆 − 1.2 ∙ 10−6𝑌𝑀 ∙ 𝑇𝑆
+ 1.6 ∙ 10−14𝑁𝑆 ∙ 𝑁𝑆𝐿 

𝑅2 = 0.93 
 

 

𝑃𝑜𝑤𝑒𝑟 = 9.5 ∙ 10−1 − 2.7 ∙ 10−5𝑁𝑆 + 2.6 ∙ 10−5𝑇𝑆 − 6 ∙ 10−10𝑁𝑆𝐿 + 4.2 ∙ 10−7𝑌𝑀 ∙ 𝑁𝑆 − 4.4
∙ 10−7𝑌𝑀 ∙ 𝑇𝑆 + 2.4 ∙ 10−15𝑁𝑆 ∙ 𝑁𝑆𝐿 

 

𝑅2 = 0.94 
 

 

𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 = 16 + 6.2 ∙ 10−1𝑌𝑀 − 5.7 ∙ 10−3𝑌𝑀2 + 2.4 ∙ 10−9𝑁𝑆𝐴 − 2.9 ∙ 10−20𝑁𝑆𝐴2 + 5
∙ 10−9𝑇𝑆𝐴 − 2.2 ∙ 10−20𝑇𝑆𝐴2 

𝑅2 = 0.99 
The literature does not often describe the cohesive soil model for simulations of agricultural tasks. Most 

researchers (Tsuji et al., 2012; X. Wang, Zhang, Huang, & Ji, 2022; Zhang, Zhai, Chen, Zhang, & 

Huang, 2022)use cohesionless models or models involving the adhesive properties of discrete elements. 

Probably one of the reasons is the high sensitivity of the cohesion model to the results of the solution 

and, therefore, the high demands on the accuracy of the obtained values of the mechanical properties 

necessary for setting the model. Another disadvantage can be the computational complexity of a model 

with cohesive properties; compared to a model without cohesion, the computational complexity in-

creases so that the computational time increases up to 10 times. Nevertheless, the cohesive model is 

more reliable for the soil model within DEM calculations, especially for analyzing the processing of soil 

and plant residues, than the adhesive or non-cohesive model. 

 

CONCLUSIONS 
The simulations and measurement results show the suitability of using a cohesive soil model for DEM. 

However, by appropriately setting of cohesion model, it is possible to obtain very accurate output values 

of the model, which is more suitable for agricultural tasks than the cohesion-less or adhesion models. 
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